skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gauthier, Gilles"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Chen, Jing M (Ed.)
    The Arctic is warming faster than anywhere else on Earth, placing tundra ecosystems at the forefront of global climate change. Plant biomass is a fundamental ecosystem attribute that is sensitive to changes in climate, closely tied to ecological function, and crucial for constraining ecosystem carbon dynamics. However, the amount, functional composition, and distribution of plant biomass are only coarsely quantified across the Arctic. Therefore, we developed the first moderate resolution (30 m) maps of live aboveground plant biomass (g m− 2) and woody plant dominance (%) for the Arctic tundra biome, including the mountainous Oro Arctic. We modeled biomass for the year 2020 using a new synthesis dataset of field biomass harvest measurements, Landsat satellite seasonal synthetic composites, ancillary geospatial data, and machine learning models. Additionally, we quantified pixel-wise uncertainty in biomass predictions using Monte Carlo simulations and validated the models using a robust, spatially blocked and nested cross-validation procedure. Observed plant and woody plant biomass values ranged from 0 to ~6000 g m− 2 (mean ≈350 g m− 2), while predicted values ranged from 0 to ~4000 g m− 2 (mean ≈275 g m− 2), resulting in model validation root-mean-squared-error (RMSE) ≈400 g m− 2 and R2 ≈ 0.6. Our maps not only capture large-scale patterns of plant biomass and woody plant dominance across the Arctic that are linked to climatic variation (e.g., thawing degree days), but also illustrate how fine-scale patterns are shaped by local surface hydrology, topography, and past disturbance. By providing data on plant biomass across Arctic tundra ecosystems at the highest resolution to date, our maps can significantly advance research and inform decision-making on topics ranging from Arctic vegetation monitoring and wildlife conservation to carbon accounting and land surface modeling 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Abstract Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we presentThe Arctic plant aboveground biomass synthesis dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass (g m−2) on 2,327 sample plots from 636 field sites in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic. 
    more » « less
  3. This dataset provides estimates of live, oven-dried aboveground biomass of all plants (tree, shrub, graminoid, forb, bryophyte) and all woody plants (tree, shrub) at 30-meter resolution across the Arctic tundra biome. Estimates of woody plant dominance are also provided as: (woody plant biomass / plant biomass) * 100. Plant biomass and woody plant biomass were estimated for each pixel (grams per square meter [g / m2]) using field harvest data for calibration/validation along with modeled seasonal surface reflectance data derived using Landsat satellite imagery and the Continuous Change Detection and Classification algorithm, and other supplementary predictors related to topography, region (e.g. bioclimate zone, ecosystem type), land cover, and derivative spectral products. Modeling was performed in a two-stage process using random forest models. First, biomass presence/absence was predicted using probability forests. Then, biomass quantity was predicted using regression forests. The model outputs were combined to produce final biomass estimates. Pixel uncertainty was assessed using Monte Carlo iterations. Field and remote sensing data were permuted during each iteration and the median (50th percentile, p500) predictions for each pixel were considered best estimates. In addition, this dataset provides the lower (2.5th percentile, p025) and upper (97.5th percentile, p975) bounds of a 95% uncertainty interval. Estimates of woody plant dominance are not modeled directly, but rather derived from plant biomass and woody plant biomass best estimates. The Pan Arctic domain includes both the Polar Arctic, defined using bioclimate zone data from the Circumpolar Arctic Vegetation Mapping Project (CAVM; Walker et al., 2005), and the Oro Arctic (treeless alpine tundra at high latitudes outside the Polar Arctic), defined using tundra ecoregions from the RESOLVE ecoregions dataset (Dinerstein et al., 2017) and treeline data from CAVM (CAVM Team, 2003). The mapped products focus on Arctic tundra vegetation biomass, but the coarse delineation of this biome meant some forested areas were included within the study domain. Therefore, this dataset also provides a tree mask product that can be used to mask out areas with canopy height ≥ 5 meters. This mask helps reduce, but does not eliminate entirely, areas of dense tree cover within the domain. Users should be cautious of predictions in forested areas as the models used to predict biomass were not well constrained in these areas. This dataset includes 132 files: 128 cloud-optimized GeoTIFFs, 2 tables in comma-separated values (CSV) format, 1 vector polygon in Shapefile format, and one figure in JPEG format. Raster data is provided in the WGS 84 / North Pole LAEA Bering Sea projection (EPSG:3571) at 30 meter (m) resolution. Raster data are tiled with letters representing rows and numbers representing columns, but note that some tiles do not contain unmasked pixels. We included all tiles nonetheless to maintain consistency. Tiling information can be found in the ‘metadata’ directory as a figure (JPEG) or shapefile. 
    more » « less
  4. Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we present The Arctic Plant Aboveground Biomass Synthesis Dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass grams per meter squared (g/m^2) on 2327 sample plots in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic. 
    more » « less
  5. Abstract Arctic warming can influence tundra ecosystem function with consequences for climate feedbacks, wildlife and human communities. Yet ecological change across the Arctic tundra biome remains poorly quantified due to field measurement limitations and reliance on coarse-resolution satellite data. Here, we assess decadal changes in Arctic tundra greenness using time series from the 30 m resolution Landsat satellites. From 1985 to 2016 tundra greenness increased (greening) at ~37.3% of sampling sites and decreased (browning) at ~4.7% of sampling sites. Greening occurred most often at warm sampling sites with increased summer air temperature, soil temperature, and soil moisture, while browning occurred most often at cold sampling sites that cooled and dried. Tundra greenness was positively correlated with graminoid, shrub, and ecosystem productivity measured at field sites. Our results support the hypothesis that summer warming stimulated plant productivity across much, but not all, of the Arctic tundra biome during recent decades. 
    more » « less
  6. null (Ed.)
    The Arctic is entering a new ecological state, with alarming consequences for humanity. Animal-borne sensors offer a window into these changes. Although substantial animal tracking data from the Arctic and subarctic exist, most are difficult to discover and access. Here, we present the new Arctic Animal Movement Archive (AAMA), a growing collection of more than 200 standardized terrestrial and marine animal tracking studies from 1991 to the present. The AAMA supports public data discovery, preserves fundamental baseline data for the future, and facilitates efficient, collaborative data analysis. With AAMA-based case studies, we document climatic influences on the migration phenology of eagles, geographic differences in the adaptive response of caribou reproductive phenology to climate change, and species-specific changes in terrestrial mammal movement rates in response to increasing temperature. 
    more » « less